50.1.35 problem 36

Internal problem ID [10033]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 36
Date solved : Tuesday, September 30, 2025 at 06:47:29 PM
CAS classification : [_Clairaut]

\begin{align*} x f^{\prime }-f&=\frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \end{align*}
Maple. Time used: 0.276 (sec). Leaf size: 318
ode:=x*diff(f(x),x)-f(x) = diff(f(x),x)^2/lambda^2*(1-diff(f(x),x)^lambda)^2; 
dsolve(ode,f(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}
Mathematica. Time used: 9.23 (sec). Leaf size: 30
ode=x*D[ f[x],x]-f[x]==D[ f[x],x]^2/\[Lambda]^2*(1-D[ f[x],x]^\[Lambda])^2; 
ic={}; 
DSolve[{ode,ic},f[x],x,IncludeSingularSolutions->True]
 
\begin{align*} f(x)&\to c_1 \left (x-\frac {c_1 \left (-1+c_1{}^{\lambda }\right ){}^2}{\lambda ^2}\right )\\ f(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
lambda_ = symbols("lambda_") 
f = Function("f") 
ode = Eq(x*Derivative(f(x), x) - f(x) - (1 - Derivative(f(x), x)**lambda_)**2*Derivative(f(x), x)**2/lambda_**2,0) 
ics = {} 
dsolve(ode,func=f(x),ics=ics)
 
NotImplementedError : multiple generators [_X0, _X0**lambda_] 
No algorithms are implemented to solve equation -_X0**2*_X0**(2*lambda_) + 2*_X0**2*_X0**lambda_ - _X0**2 + _X0*lambda_**2*x - lambda_**2*f(x)