50.3.6 problem 6

Internal problem ID [10150]
Book : Own collection of miscellaneous problems
Section : section 3.0
Problem number : 6
Date solved : Tuesday, September 30, 2025 at 07:05:15 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.058 (sec). Leaf size: 31
ode:=diff(diff(y(x),x),x)+y(x) = sin(x); 
ic:=[y(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {\left (\left (-2 c_2 -1\right ) \tan \left (1\right )-x +1\right ) \cos \left (x \right )}{2}+\frac {\sin \left (x \right ) \left (2 c_2 +1\right )}{2} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 37
ode=D[y[x],{x,2}]+y[x]==Sin[x]; 
ic={y[0] == 0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (x) \int _0^x-\sin ^2(K[1])dK[1]+\sin (x) \left (-\frac {\cos ^2(x)}{2}+c_2\right ) \end{align*}
Sympy. Time used: 0.062 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - sin(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \sin {\left (x \right )} + \left (- \frac {C_{2} \sin {\left (1 \right )}}{\cos {\left (1 \right )}} - \frac {x}{2} + \frac {1}{2}\right ) \cos {\left (x \right )} \]