50.3.12 problem 12

Internal problem ID [10156]
Book : Own collection of miscellaneous problems
Section : section 3.0
Problem number : 12
Date solved : Tuesday, September 30, 2025 at 07:05:21 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \end{align*}

With initial conditions

\begin{align*} y^{\prime }\left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.187 (sec). Leaf size: 110
ode:=diff(diff(y(x),x),x)+diff(y(x),x)+y(x) = sin(x); 
ic:=[D(y)(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {2 \sin \left (1\right ) {\mathrm e}^{\frac {1}{2}-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )+{\mathrm e}^{-\frac {x}{2}} c_2 \left (\cos \left (\frac {\sqrt {3}}{2}\right ) \sqrt {3}-\sin \left (\frac {\sqrt {3}}{2}\right )\right ) \cos \left (\frac {\sqrt {3}\, x}{2}\right )+\left (\sin \left (\frac {\sqrt {3}}{2}\right ) \sqrt {3}+\cos \left (\frac {\sqrt {3}}{2}\right )\right ) \left ({\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) c_2 -\cos \left (x \right )\right )}{\sin \left (\frac {\sqrt {3}}{2}\right ) \sqrt {3}+\cos \left (\frac {\sqrt {3}}{2}\right )} \]
Mathematica. Time used: 0.206 (sec). Leaf size: 578
ode=D[y[x],{x,3}]+D[y[x],x]+y[x]==Sin[x]; 
ic={Derivative[1][y][1] == 0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}
Sympy. Time used: 0.144 (sec). Leaf size: 133
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - sin(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {Subs(Derivative(y(x), x), x, 1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{2} \cos {\left (\frac {\sqrt {3} x}{2} \right )} + \left (C_{2} \left (\frac {\cos {\left (\frac {\sqrt {3}}{2} \right )}}{- \sin {\left (\frac {\sqrt {3}}{2} \right )} + \sqrt {3} \cos {\left (\frac {\sqrt {3}}{2} \right )}} + \frac {\sqrt {3} \sin {\left (\frac {\sqrt {3}}{2} \right )}}{- \sin {\left (\frac {\sqrt {3}}{2} \right )} + \sqrt {3} \cos {\left (\frac {\sqrt {3}}{2} \right )}}\right ) - \frac {2 e^{\frac {1}{2}} \sin {\left (1 \right )}}{- \sin {\left (\frac {\sqrt {3}}{2} \right )} + \sqrt {3} \cos {\left (\frac {\sqrt {3}}{2} \right )}}\right ) \sin {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{- \frac {x}{2}} - \cos {\left (x \right )} \]