Internal
problem
ID
[10158]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
3.0
Problem
number
:
14
Date
solved
:
Tuesday, September 30, 2025 at 07:05:23 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)+diff(y(x),x)+y(x) = x; ic:=[D(y)(0) = 0, y(0) = 0, (D@@2)(y)(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,3}]+D[y[x],x]+y[x]==x; ic={Derivative[1][y][1] == 0,y[0]==0,Derivative[2][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) ics = {Subs(Derivative(y(x), x), x, 0): 0, y(0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 1} dsolve(ode,func=y(x),ics=ics)
Timed Out