50.3.26 problem 26

Internal problem ID [10170]
Book : Own collection of miscellaneous problems
Section : section 3.0
Problem number : 26
Date solved : Tuesday, September 30, 2025 at 07:10:57 PM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2}&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)+sin(y(x))*diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \int _{}^{y}{\mathrm e}^{-\cos \left (\textit {\_a} \right )}d \textit {\_a} -c_1 x -c_2 = 0 \]
Mathematica. Time used: 0.154 (sec). Leaf size: 129
ode=D[y[x],{x,2}]+y[x]*Sin[y[x]](D[y[x],x])^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[2]}-K[1] \sin (K[1])dK[1]\right )}{c_1}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\exp \left (-\int _1^{K[2]}-K[1] \sin (K[1])dK[1]\right )}{c_1}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\exp \left (-\int _1^{K[2]}-K[1] \sin (K[1])dK[1]\right )}{c_1}dK[2]\&\right ][x+c_2] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sin(y(x))*Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-Derivative(y(x), (x, 2))/sin(y(x))) + Derivative(y(x), x) cannot be solved by the factorable group method