51.1.13 problem 13

Internal problem ID [10283]
Book : First order enumerated odes
Section : section 1
Problem number : 13
Date solved : Tuesday, September 30, 2025 at 07:17:14 PM
CAS classification : [_quadrature]

\begin{align*} c y^{\prime }&=a \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 12
ode:=c*diff(y(x),x) = a; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {a x}{c}+c_1 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 14
ode=c*D[y[x],x]==a; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {a x}{c}+c_1 \end{align*}
Sympy. Time used: 0.065 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
a = symbols("a") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-a + c*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {a x}{c} \]