51.1.51 problem 51

Internal problem ID [10321]
Book : First order enumerated odes
Section : section 1
Problem number : 51
Date solved : Tuesday, September 30, 2025 at 07:19:23 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} {y^{\prime }}^{2}&=\frac {y}{x} \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 39
ode:=diff(y(x),x)^2 = y(x)/x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \frac {\left (x +\sqrt {c_1 x}\right )^{2}}{x} \\ y &= \frac {\left (-x +\sqrt {c_1 x}\right )^{2}}{x} \\ \end{align*}
Mathematica. Time used: 0.028 (sec). Leaf size: 46
ode=(D[y[x],x])^2==y[x]/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{4} \left (-2 \sqrt {x}+c_1\right ){}^2\\ y(x)&\to \frac {1}{4} \left (2 \sqrt {x}+c_1\right ){}^2\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.426 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 - y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}^{2}}{4} - C_{1} \sqrt {x} + x \]