Internal
problem
ID
[10334]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
64
Date
solved
:
Tuesday, September 30, 2025 at 07:22:02 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
ode:=diff(y(x),x) = (Pi+x+7*y(x))^(7/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(Pi+x+7*y[x])^(7/2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(x + 7*y(x) + pi)**(7/2) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out