51.3.4 problem 4

Internal problem ID [10347]
Book : First order enumerated odes
Section : section 3. First order odes solved using Laplace method
Problem number : 4
Date solved : Tuesday, September 30, 2025 at 07:22:28 PM
CAS classification : [_separable]

\begin{align*} t y^{\prime }+y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=y_{0} \\ \end{align*}
Maple. Time used: 0.077 (sec). Leaf size: 12
ode:=t*diff(y(t),t)+y(t) = 0; 
ic:=[y(0) = y__0]; 
dsolve([ode,op(ic)],y(t),method='laplace');
 
\[ y = \frac {y_{0} \delta \left (t \right )}{\delta \left (0\right )} \]
Mathematica
ode=t*D[y[t],t]+y[t]==0; 
ic=y[0]==y0; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 

Not solved

Sympy. Time used: 0.065 (sec). Leaf size: 3
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), t) + y(t),0) 
ics = {y(0): y__0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = 0 \]