Internal
problem
ID
[10353]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
10
Date
solved
:
Tuesday, September 30, 2025 at 07:22:31 PM
CAS
classification
:
[_linear]
Using Laplace method With initial conditions
ode:=t*diff(y(t),t)+y(t) = t; ic:=[y(1) = 1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=t*D[y[t],t]+y[t]==t; ic=y[1]==1; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*Derivative(y(t), t) - t + y(t),0) ics = {y(1): 1} dsolve(ode,func=y(t),ics=ics)