Internal
problem
ID
[10355]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
12
Date
solved
:
Tuesday, September 30, 2025 at 07:22:32 PM
CAS
classification
:
[_linear]
Using Laplace method With initial conditions
ode:=(a*t+1)*diff(y(t),t)+y(t) = t; ic:=[y(1) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=(1+a*t)*D[y[t],t]+y[t]==t; ic=y[1]==0; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") y = Function("y") ode = Eq(-t + (a*t + 1)*Derivative(y(t), t) + y(t),0) ics = {y(1): 0} dsolve(ode,func=y(t),ics=ics)