51.4.4 problem 4

Internal problem ID [10361]
Book : First order enumerated odes
Section : section 4. First order odes solved using series method
Problem number : 4
Date solved : Tuesday, September 30, 2025 at 07:22:36 PM
CAS classification : [_linear]

\begin{align*} x y^{\prime }+y&=x \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.029 (sec). Leaf size: 24
Order:=6; 
ode:=x*diff(y(x),x)+y(x) = x; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \left (1+\operatorname {O}\left (x^{6}\right )\right )}{x}+x \left (\frac {1}{2}+\operatorname {O}\left (x^{5}\right )\right ) \]
Mathematica. Time used: 0.016 (sec). Leaf size: 15
ode=x*D[y[x],x]+y[x]==x; 
AsymptoticDSolveValue[ode,y[x],{x,0,5}]
 
\[ y(x)\to \frac {x}{2}+\frac {c_1}{x} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
ValueError : ODE x*Derivative(y(x), x) - x + y(x) does not match hint 1st_power_series