Internal
problem
ID
[10366]
Book
:
First
order
enumerated
odes
Section
:
section
4.
First
order
odes
solved
using
series
method
Problem
number
:
9
Date
solved
:
Tuesday, September 30, 2025 at 07:22:38 PM
CAS
classification
:
[[_linear, `class A`]]
Using series method with expansion around
Order:=6; ode:=x*diff(y(x),x)+2*x*y(x) = x^(1/2); dsolve(ode,y(x),type='series',x=0);
ode=x*D[y[x],x]+2*x*y[x]==Sqrt[x]; AsymptoticDSolveValue[ode,y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-sqrt(x) + 2*x*y(x) + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
ValueError : ODE -sqrt(x) + 2*x*y(x) + x*Derivative(y(x), x) does not match hint 1st_power_series