52.1.17 problem 17

Internal problem ID [10388]
Book : Second order enumerated odes
Section : section 1
Problem number : 17
Date solved : Tuesday, September 30, 2025 at 07:22:55 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=1 \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2 = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x -\ln \left (2\right )+\ln \left (-c_1 \,{\mathrm e}^{2 x}+c_2 \right ) \]
Mathematica. Time used: 0.426 (sec). Leaf size: 45
ode=D[y[x],{x,2}]+(D[y[x],x])^2==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^x\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{(K[1]-1) (K[1]+1)}dK[1]\&\right ][c_1-K[2]]dK[2]+c_2 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out