52.1.39 problem 39

Internal problem ID [10410]
Book : Second order enumerated odes
Section : section 1
Problem number : 39
Date solved : Tuesday, September 30, 2025 at 07:23:14 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+y&=x \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=diff(diff(y(x),x),x)+y(x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 +x \]
Mathematica. Time used: 0.008 (sec). Leaf size: 17
ode=D[y[x],{x,2}]+y[x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.024 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} + x \]