52.1.43 problem 43

Internal problem ID [10414]
Book : Second order enumerated odes
Section : section 1
Problem number : 43
Date solved : Tuesday, September 30, 2025 at 07:23:17 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 25
ode:=diff(diff(y(x),x),x)+y(x) = sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (2 c_1 -x \right ) \cos \left (x \right )}{2}+\frac {\sin \left (x \right ) \left (2 c_2 +1\right )}{2} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 43
ode=D[y[x],{x,2}]+y[x]==Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (x) \int _1^x-\sin ^2(K[1])dK[1]-\frac {1}{2} \sin (x) \cos ^2(x)+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.050 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - sin(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \sin {\left (x \right )} + \left (C_{1} - \frac {x}{2}\right ) \cos {\left (x \right )} \]