52.1.49 problem 49
Internal
problem
ID
[10420]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
49
Date
solved
:
Tuesday, September 30, 2025 at 07:23:24 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
\begin{align*} y^{3} {y^{\prime \prime }}^{2}+y y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 0.088 (sec). Leaf size: 225
ode:=y(x)^3*diff(diff(y(x),x),x)^2+y(x)*diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= c_1 \\
y &= 0 \\
-4 \int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_1 \right )^{{2}/{3}}}d \textit {\_a} -x -c_2 &= 0 \\
-4 \int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_1 \right )^{{2}/{3}}}d \textit {\_a} -x -c_2 &= 0 \\
\frac {-16 \int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_1 \right )^{{2}/{3}}}d \textit {\_a} -2 i \left (c_2 +x \right ) \sqrt {3}+2 x +2 c_2}{\left (-1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-16 \int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_1 \right )^{{2}/{3}}}d \textit {\_a} +2 i \left (c_2 +x \right ) \sqrt {3}+2 x +2 c_2}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-16 \int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_1 \right )^{{2}/{3}}}d \textit {\_a} -2 i \left (c_2 +x \right ) \sqrt {3}+2 x +2 c_2}{\left (-1-i \sqrt {3}\right )^{2}} &= 0 \\
\frac {-16 \int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_1 \right )^{{2}/{3}}}d \textit {\_a} +2 i \left (c_2 +x \right ) \sqrt {3}+2 x +2 c_2}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\
\end{align*}
✓ Mathematica. Time used: 1.357 (sec). Leaf size: 459
ode=y[x]^3*D[y[x],{x,2}]^2+y[x]*D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to 0\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to 0\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i (-c_1)} (-\log (\text {$\#$1})-i (-1) c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i (-1) c_1-\log (\text {$\#$1})\right )}{(-i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i (-c_1)} (-\log (\text {$\#$1})+i (-c_1)){}^{2/3} \Gamma \left (\frac {1}{3},i (-c_1)-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2] \end{align*}
✓ Sympy. Time used: 0.146 (sec). Leaf size: 3
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(y(x)**3*Derivative(y(x), (x, 2))**2 + y(x)*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = 0
\]