Internal
problem
ID
[10439]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
17
Date
solved
:
Tuesday, September 30, 2025 at 07:26:43 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(y(x),x),x)+2/x*diff(y(x),x)+a^2/x^4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2/x*D[y[x],x]+a^2/x^4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a**2*y(x)/x**4 + Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)