53.1.439 problem 452

Internal problem ID [10911]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 452
Date solved : Tuesday, September 30, 2025 at 07:33:02 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=x*diff(diff(y(x),x),x)-(2*x+1)*diff(y(x),x)+(1+x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_2 \,x^{2}+c_1 \right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 23
ode=x*D[y[x],{x,2}]-(2*x+1)*D[y[x],x]+(x+1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} e^x \left (c_2 x^2+2 c_1\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (x + 1)*y(x) - (2*x + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False