Internal
problem
ID
[11298]
Book
:
Collection
of
Kovacic
problems
Section
:
section
2.
Solution
found
using
all
possible
Kovacic
cases
Problem
number
:
5
Date
solved
:
Tuesday, September 30, 2025 at 07:37:43 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*diff(diff(y(x),x),x)-(2+2*x)*diff(y(x),x)+(x+2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]-(2*x+2)*D[y[x],x]+(2+x)*y[x] ==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) + (x + 2)*y(x) - (2*x + 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False