Internal
problem
ID
[11339]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
25
Date
solved
:
Tuesday, September 30, 2025 at 07:55:18 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x)+a*y(x)^2-b*x^(2*nu)-c*x^(nu-1) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] + a*y[x]^2 - b*x^(2*nu) - c*x^(nu-1)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") nu = symbols("nu") y = Function("y") ode = Eq(a*y(x)**2 - b*x**(2*nu) - c*x**(nu - 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*y(x)**2 - b*x**(2*nu) - c*x**(nu - 1) + Derivative(y(x), x) cannot be solved by the lie group method