54.1.94 problem 96

Internal problem ID [11408]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 96
Date solved : Tuesday, September 30, 2025 at 08:15:04 PM
CAS classification : [_separable]

\begin{align*} x y^{\prime }-y^{2}+1&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 11
ode:=x*diff(y(x),x)-y(x)^2+1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\tanh \left (\ln \left (x \right )+c_1 \right ) \]
Mathematica. Time used: 0.309 (sec). Leaf size: 43
ode=x*D[y[x],x] - y[x]^2 + 1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1-e^{2 c_1} x^2}{1+e^{2 c_1} x^2}\\ y(x)&\to -1\\ y(x)&\to 1 \end{align*}
Sympy. Time used: 0.200 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - y(x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {- x^{2} e^{2 C_{1}} - 1}{x^{2} e^{2 C_{1}} - 1} \]