1.1.2 problem 2

Internal problem ID [2]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.2. Problems at page 17
Problem number : 2
Date solved : Tuesday, September 30, 2025 at 03:38:05 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\left (x -2\right )^{2} \end{align*}

With initial conditions

\begin{align*} y \left (2\right )&=1 \\ \end{align*}
Maple. Time used: 0.025 (sec). Leaf size: 13
ode:=diff(y(x),x) = (x-2)^2; 
ic:=[y(2) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {\left (x -2\right )^{3}}{3}+1 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 22
ode=D[y[x],x]==(x-2)^2; 
ic={y[2]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{3} \left (x^3-6 x^2+12 x-5\right ) \end{align*}
Sympy. Time used: 0.101 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(x - 2)**2 + Derivative(y(x), x),0) 
ics = {y(2): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{3}}{3} - 2 x^{2} + 4 x - \frac {5}{3} \]