1.1.9 problem 9

Internal problem ID [9]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.2. Problems at page 17
Problem number : 9
Date solved : Tuesday, September 30, 2025 at 03:38:10 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.021 (sec). Leaf size: 6
ode:=diff(y(x),x) = 1/(-x^2+1)^(1/2); 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \arcsin \left (x \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 7
ode=D[y[x],x]==1/Sqrt[1-x^2]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \arcsin (x) \end{align*}
Sympy. Time used: 0.103 (sec). Leaf size: 5
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - 1/sqrt(1 - x**2),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \operatorname {asin}{\left (x \right )} \]