1.1.11 problem 11

Internal problem ID [11]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.2. Problems at page 17
Problem number : 11
Date solved : Tuesday, September 30, 2025 at 03:38:11 AM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} x^{\prime \prime }&=50 \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=20 \\ x^{\prime }\left (0\right )&=10 \\ \end{align*}
Maple. Time used: 0.028 (sec). Leaf size: 14
ode:=diff(diff(x(t),t),t) = 50; 
ic:=[x(0) = 20, D(x)(0) = 10]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = 25 t^{2}+10 t +20 \]
Mathematica. Time used: 0.027 (sec). Leaf size: 13
ode=D[x[t],{t,2}]==50; 
ic={x[0]==0,Derivative[1][x][0] ==10}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to 5 t (5 t+2) \end{align*}
Sympy. Time used: 0.041 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(Derivative(x(t), (t, 2)) - 50,0) 
ics = {x(0): 20, Subs(Derivative(x(t), t), t, 0): 10} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = 25 t^{2} + 10 t + 20 \]