54.1.231 problem 236

Internal problem ID [11545]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 236
Date solved : Tuesday, September 30, 2025 at 08:59:43 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (y+4\right ) y^{\prime }-y^{2}-2 y-2 x&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 125
ode:=x*(y(x)+4)*diff(y(x),x)-y(x)^2-2*y(x)-2*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= x \\ y &= \frac {-\sqrt {4+x}\, \sqrt {\frac {c_1 \left (4+x \right )-4}{4+x}}\, x -4 \sqrt {x}}{-\sqrt {4+x}\, \sqrt {\frac {c_1 \left (4+x \right )-4}{4+x}}+\sqrt {x}} \\ y &= \frac {\sqrt {4+x}\, \sqrt {\frac {c_1 \left (4+x \right )-4}{4+x}}\, x -4 \sqrt {x}}{\sqrt {4+x}\, \sqrt {\frac {c_1 \left (4+x \right )-4}{4+x}}+\sqrt {x}} \\ \end{align*}
Mathematica. Time used: 1.936 (sec). Leaf size: 569
ode=x*(y[x]+4)*D[y[x],x]-y[x]^2-2*y[x]-2*x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -4+\frac {1}{x \left (\frac {1}{x^2+4 x}-\frac {\exp \left (\int _1^x-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right )}{\sqrt {-2 \int _1^x-2 \exp \left (2 \int _1^{K[2]}-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right ) K[2] (K[2]+4)dK[2]+c_1}}\right )}\\ y(x)&\to -4+\frac {1}{x \left (\frac {1}{x^2+4 x}+\frac {\exp \left (\int _1^x-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right )}{\sqrt {-2 \int _1^x-2 \exp \left (2 \int _1^{K[2]}-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right ) K[2] (K[2]+4)dK[2]+c_1}}\right )}\\ y(x)&\to x\\ y(x)&\to -\frac {2 x \left (2 \sqrt {2} (x+4) \exp \left (\int _1^x-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right )+\sqrt {-\int _1^x-2 \exp \left (2 \int _1^{K[2]}-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right ) K[2] (K[2]+4)dK[2]}\right )}{\sqrt {2} x (x+4) \exp \left (\int _1^x-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right )-2 \sqrt {-\int _1^x-2 \exp \left (2 \int _1^{K[2]}-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right ) K[2] (K[2]+4)dK[2]}}\\ y(x)&\to \frac {2 x \left (\sqrt {-\int _1^x-2 \exp \left (2 \int _1^{K[2]}-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right ) K[2] (K[2]+4)dK[2]}-2 \sqrt {2} (x+4) \exp \left (\int _1^x-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right )\right )}{\sqrt {2} x (x+4) \exp \left (\int _1^x-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right )+2 \sqrt {-\int _1^x-2 \exp \left (2 \int _1^{K[2]}-\frac {2 (K[1]+1)}{K[1] (K[1]+4)}dK[1]\right ) K[2] (K[2]+4)dK[2]}} \end{align*}
Sympy. Time used: 3.736 (sec). Leaf size: 68
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(y(x) + 4)*Derivative(y(x), x) - 2*x - y(x)**2 - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (2 x e^{C_{1}} + x - \sqrt {x \left (2 x e^{C_{1}} + x + 8 e^{C_{1}}\right )}\right ) e^{- C_{1}}}{2}, \ y{\left (x \right )} = \frac {\left (2 x e^{C_{1}} + x + \sqrt {x \left (2 x e^{C_{1}} + x + 8 e^{C_{1}}\right )}\right ) e^{- C_{1}}}{2}\right ] \]