54.1.259 problem 264
Internal
problem
ID
[11573]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
264
Date
solved
:
Tuesday, September 30, 2025 at 09:24:54 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} 2 x \left (x^{3} y+1\right ) y^{\prime }+\left (3 x^{3} y-1\right ) y&=0 \end{align*}
✓ Maple. Time used: 0.218 (sec). Leaf size: 37
ode:=2*x*(x^3*y(x)+1)*diff(y(x),x)+(3*x^3*y(x)-1)*y(x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {\operatorname {RootOf}\left (c_1 \,\textit {\_Z}^{98}-14 c_1 \,\textit {\_Z}^{77}+49 c_1 \,\textit {\_Z}^{56}-9 x^{7}\right )^{21}-7}{3 x^{3}}
\]
✓ Mathematica. Time used: 5.291 (sec). Leaf size: 680
ode=2*x*(x^3*y[x]+1)*D[y[x],x]+(3*x^3*y[x]-1)*y[x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \text {Root}\left [81 \text {$\#$1}^7 e^{\frac {21 c_1}{2}} x^{12}+756 \text {$\#$1}^6 e^{\frac {21 c_1}{2}} x^9+2646 \text {$\#$1}^5 e^{\frac {21 c_1}{2}} x^6+4116 \text {$\#$1}^4 e^{\frac {21 c_1}{2}} x^3+2401 \text {$\#$1}^3 e^{\frac {21 c_1}{2}}-x^{3/2}\&,1\right ]\\ y(x)&\to \text {Root}\left [81 \text {$\#$1}^7 e^{\frac {21 c_1}{2}} x^{12}+756 \text {$\#$1}^6 e^{\frac {21 c_1}{2}} x^9+2646 \text {$\#$1}^5 e^{\frac {21 c_1}{2}} x^6+4116 \text {$\#$1}^4 e^{\frac {21 c_1}{2}} x^3+2401 \text {$\#$1}^3 e^{\frac {21 c_1}{2}}-x^{3/2}\&,2\right ]\\ y(x)&\to \text {Root}\left [81 \text {$\#$1}^7 e^{\frac {21 c_1}{2}} x^{12}+756 \text {$\#$1}^6 e^{\frac {21 c_1}{2}} x^9+2646 \text {$\#$1}^5 e^{\frac {21 c_1}{2}} x^6+4116 \text {$\#$1}^4 e^{\frac {21 c_1}{2}} x^3+2401 \text {$\#$1}^3 e^{\frac {21 c_1}{2}}-x^{3/2}\&,3\right ]\\ y(x)&\to \text {Root}\left [81 \text {$\#$1}^7 e^{\frac {21 c_1}{2}} x^{12}+756 \text {$\#$1}^6 e^{\frac {21 c_1}{2}} x^9+2646 \text {$\#$1}^5 e^{\frac {21 c_1}{2}} x^6+4116 \text {$\#$1}^4 e^{\frac {21 c_1}{2}} x^3+2401 \text {$\#$1}^3 e^{\frac {21 c_1}{2}}-x^{3/2}\&,4\right ]\\ y(x)&\to \text {Root}\left [81 \text {$\#$1}^7 e^{\frac {21 c_1}{2}} x^{12}+756 \text {$\#$1}^6 e^{\frac {21 c_1}{2}} x^9+2646 \text {$\#$1}^5 e^{\frac {21 c_1}{2}} x^6+4116 \text {$\#$1}^4 e^{\frac {21 c_1}{2}} x^3+2401 \text {$\#$1}^3 e^{\frac {21 c_1}{2}}-x^{3/2}\&,5\right ]\\ y(x)&\to \text {Root}\left [81 \text {$\#$1}^7 e^{\frac {21 c_1}{2}} x^{12}+756 \text {$\#$1}^6 e^{\frac {21 c_1}{2}} x^9+2646 \text {$\#$1}^5 e^{\frac {21 c_1}{2}} x^6+4116 \text {$\#$1}^4 e^{\frac {21 c_1}{2}} x^3+2401 \text {$\#$1}^3 e^{\frac {21 c_1}{2}}-x^{3/2}\&,6\right ]\\ y(x)&\to \text {Root}\left [81 \text {$\#$1}^7 e^{\frac {21 c_1}{2}} x^{12}+756 \text {$\#$1}^6 e^{\frac {21 c_1}{2}} x^9+2646 \text {$\#$1}^5 e^{\frac {21 c_1}{2}} x^6+4116 \text {$\#$1}^4 e^{\frac {21 c_1}{2}} x^3+2401 \text {$\#$1}^3 e^{\frac {21 c_1}{2}}-x^{3/2}\&,7\right ] \end{align*}
✓ Sympy. Time used: 0.418 (sec). Leaf size: 31
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(2*x*(x**3*y(x) + 1)*Derivative(y(x), x) + (3*x**3*y(x) - 1)*y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
- \log {\left (x \right )} + \frac {2 \log {\left (x^{3} y{\left (x \right )} \right )}}{7} + \frac {8 \log {\left (x^{3} y{\left (x \right )} + \frac {7}{3} \right )}}{21} = C_{1}
\]