54.1.276 problem 282

Internal problem ID [11590]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 282
Date solved : Tuesday, September 30, 2025 at 09:35:55 PM
CAS classification : [[_homogeneous, `class C`], _rational]

\begin{align*} \left (y+3 x -1\right )^{2} y^{\prime }-\left (2 y-1\right ) \left (4 y+6 x -3\right )&=0 \end{align*}
Maple. Time used: 0.159 (sec). Leaf size: 75
ode:=(y(x)+3*x-1)^2*diff(y(x),x)-(2*y(x)-1)*(4*y(x)+6*x-3) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ 3 \ln \left (\frac {-2 y+1}{6 x -1}\right )-4 \ln \left (2\right )-3 \ln \left (\frac {-y+3 x}{6 x -1}\right )-\ln \left (\frac {-3 y+2-3 x}{6 x -1}\right )-\ln \left (6 x -1\right )-c_1 = 0 \]
Mathematica. Time used: 60.122 (sec). Leaf size: 1089
ode=(y[x]+3*x-1)^2*D[y[x],x]-(2*y[x]-1)*(4*y[x]+6*x-3)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - 2*y(x))*(6*x + 4*y(x) - 3) + (3*x + y(x) - 1)**2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out