Internal
problem
ID
[11595]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
287
Date
solved
:
Tuesday, September 30, 2025 at 09:36:15 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, _dAlembert]
ode:=(2*y(x)-4*x+1)^2*diff(y(x),x)-(y(x)-2*x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(2*y[x]-4*x+1)^2*D[y[x],x]-(y[x]-2*x)^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(-2*x + y(x))**2 + (-4*x + 2*y(x) + 1)**2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)