54.1.291 problem 297

Internal problem ID [11605]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 297
Date solved : Tuesday, September 30, 2025 at 09:37:53 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} 2 x \left (y^{2}+5 x^{2}\right ) y^{\prime }+y^{3}-x^{2} y&=0 \end{align*}
Maple. Time used: 0.025 (sec). Leaf size: 29
ode:=2*x*(y(x)^2+5*x^2)*diff(y(x),x)+y(x)^3-x^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (\textit {\_Z}^{5} c_1^{4} x^{4} \sqrt {c_1 x}-\textit {\_Z}^{2}-3\right ) x \]
Mathematica. Time used: 2.596 (sec). Leaf size: 216
ode=2*x*(y[x]^2+5*x^2)*D[y[x],x]+y[x]^3-x^2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,1\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,2\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,3\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,4\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\&,5\right ] \end{align*}
Sympy. Time used: 0.490 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x) + 2*x*(5*x**2 + y(x)**2)*Derivative(y(x), x) + y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (x \right )} = C_{1} + \log {\left (\frac {\left (3 + \frac {y^{2}{\left (x \right )}}{x^{2}}\right )^{\frac {2}{9}}}{\left (\frac {y{\left (x \right )}}{x}\right )^{\frac {10}{9}}} \right )} \]