Internal
problem
ID
[11645]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
338
Date
solved
:
Tuesday, September 30, 2025 at 09:53:13 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=(y(x)*(x^2+y(x)^2)^(1/2)+(y(x)^2-x^2)*sin(alpha)-2*x*y(x)*cos(alpha))*diff(y(x),x)+x*(x^2+y(x)^2)^(1/2)+2*x*y(x)*sin(alpha)+(y(x)^2-x^2)*cos(alpha) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x*Sin[\[Alpha]]*y[x] + Cos[\[Alpha]]*(-x^2 + y[x]^2) + x*Sqrt[x^2 + y[x]^2] + (-2*x*Cos[\[Alpha]]*y[x] + Sin[\[Alpha]]*(-x^2 + y[x]^2) + y[x]*Sqrt[x^2 + y[x]^2])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") y = Function("y") ode = Eq(x*sqrt(x**2 + y(x)**2) + 2*x*y(x)*sin(Alpha) + (-x**2 + y(x)**2)*cos(Alpha) + (-2*x*y(x)*cos(Alpha) + (-x**2 + y(x)**2)*sin(Alpha) + sqrt(x**2 + y(x)**2)*y(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out