1.2.12 problem 14

Internal problem ID [30]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.3. Problems at page 27
Problem number : 14
Date solved : Tuesday, September 30, 2025 at 03:38:43 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{{1}/{3}} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.016 (sec). Leaf size: 5
ode:=diff(y(x),x) = y(x)^(1/3); 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 0 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 21
ode=D[y[x],x]==y[x]^(1/3); 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2}{3} \sqrt {\frac {2}{3}} x^{3/2} \end{align*}
Sympy. Time used: 0.492 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**(1/3) + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {2 \sqrt {6} x^{\frac {3}{2}}}{9}, \ y{\left (x \right )} = \frac {2 \sqrt {6} x^{\frac {3}{2}}}{9}\right ] \]