Internal
problem
ID
[11851]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
550
Date
solved
:
Friday, October 03, 2025 at 02:48:02 AM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=diff(y(x),x)^r-a*y(x)^s-b*x^(r*s/(r-s)) = 0; dsolve(ode,y(x), singsol=all);
ode=-(b*x^((r*s)/(r - s))) - a*y[x]^s + D[y[x],x]^r==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") r = symbols("r") s = symbols("s") y = Function("y") ode = Eq(-a*y(x)**s - b*x**(r*s/(r - s)) + Derivative(y(x), x)**r,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out