1.3.5 problem 5

Internal problem ID [45]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.4 (separable equations). Problems at page 43
Problem number : 5
Date solved : Tuesday, September 30, 2025 at 03:40:31 AM
CAS classification : [_separable]

\begin{align*} 2 \sqrt {x}\, y^{\prime }&=\sqrt {1-y^{2}} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 12
ode:=2*x^(1/2)*diff(y(x),x) = (1-y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (\sqrt {x}+\frac {c_1}{2}\right ) \]
Mathematica. Time used: 0.115 (sec). Leaf size: 32
ode=2*Sqrt[x]*D[y[x],x]==Sqrt[1-y[x]^2]; 
DSolve[ode,y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sin \left (\sqrt {x}+c_1\right )\\ y(x)&\to -1\\ y(x)&\to 1\\ y(x)&\to \text {Interval}[\{-1,1\}] \end{align*}
Sympy. Time used: 0.159 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*sqrt(x)*Derivative(y(x), x) - sqrt(1 - y(x)**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sin {\left (C_{1} + \sqrt {x} \right )} \]