54.2.3 problem 579

Internal problem ID [11877]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 579
Date solved : Tuesday, September 30, 2025 at 11:38:25 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} y^{\prime }&=-\frac {a x}{2}+F \left (y+\frac {a \,x^{2}}{4}+\frac {b x}{2}\right ) \end{align*}
Maple. Time used: 0.015 (sec). Leaf size: 35
ode:=diff(y(x),x) = -1/2*a*x+F(y(x)+1/4*x^2*a+1/2*b*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {a \,x^{2}}{4}-\frac {b x}{2}+\operatorname {RootOf}\left (-x +2 \int _{}^{\textit {\_Z}}\frac {1}{2 F \left (\textit {\_a} \right )+b}d \textit {\_a} +c_1 \right ) \]
Mathematica. Time used: 0.12 (sec). Leaf size: 514
ode=D[y[x],x] == -1/2*(a*x) + F[(b*x)/2 + (a*x^2)/4 + y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {b \int _1^x\left (\frac {2 a K[1] F''\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )}{\left (b+2 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )\right )^2}+\frac {2 F''\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )}{b+2 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )}-\frac {4 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right ) F''\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )}{\left (b+2 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )\right )^2}\right )dK[1]+2 F\left (\frac {a x^2}{4}+\frac {b x}{2}+K[2]\right ) \int _1^x\left (\frac {2 a K[1] F''\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )}{\left (b+2 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )\right )^2}+\frac {2 F''\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )}{b+2 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )}-\frac {4 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right ) F''\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )}{\left (b+2 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+K[2]\right )\right )^2}\right )dK[1]+2}{b+2 F\left (\frac {a x^2}{4}+\frac {b x}{2}+K[2]\right )}dK[2]+\int _1^x\left (\frac {2 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+y(x)\right )}{b+2 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+y(x)\right )}-\frac {a K[1]}{b+2 F\left (\frac {1}{4} a K[1]^2+\frac {1}{2} b K[1]+y(x)\right )}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
F = Function("F") 
ode = Eq(a*x/2 - F(a*x**2/4 + b*x/2 + y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE a*x/2 - F(a*x**2/4 + b*x/2 + y(x)) + Derivative(y(x), x) cannot be solved by the lie group method