54.2.33 problem 609

Internal problem ID [11907]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 609
Date solved : Tuesday, September 30, 2025 at 11:39:38 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{\prime }&=\frac {-3 x^{2} y+F \left (x^{3} y\right )}{x^{3}} \end{align*}
Maple. Time used: 0.020 (sec). Leaf size: 22
ode:=diff(y(x),x) = (-3*x^2*y(x)+F(x^3*y(x)))/x^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {RootOf}\left (x -\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} +c_1 \right )}{x^{3}} \]
Mathematica. Time used: 0.164 (sec). Leaf size: 117
ode=D[y[x],x] == (F[x^3*y[x]] - 3*x^2*y[x])/x^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {x^3+F\left (x^3 K[2]\right ) \int _1^x\left (\frac {3 K[1]^5 K[2] F''\left (K[1]^3 K[2]\right )}{F\left (K[1]^3 K[2]\right )^2}-\frac {3 K[1]^2}{F\left (K[1]^3 K[2]\right )}\right )dK[1]}{F\left (x^3 K[2]\right )}dK[2]+\int _1^x\left (1-\frac {3 K[1]^2 y(x)}{F\left (K[1]^3 y(x)\right )}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F = Function("F") 
ode = Eq(Derivative(y(x), x) - (-3*x**2*y(x) + F(x**3*y(x)))/x**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) + 3*y(x)/x - F(x**3*y(x))/x**3 cannot be solved by the factorable group method