54.2.71 problem 647

Internal problem ID [11945]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 647
Date solved : Sunday, October 12, 2025 at 02:05:22 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{2} x}{a^{{5}/{2}} y} \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 318
ode:=diff(y(x),x) = (a*y(x)^2+b*x^2)^2*x/a^(5/2)/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {{\mathrm e}^{-\frac {x^{2} \left (-2 \sqrt {-\frac {b}{a^{{3}/{2}}}}\, a^{{3}/{2}}+b \,x^{2}\right )}{2 a^{{3}/{2}}}} \sqrt {-\left (c_1 \left (\sqrt {-\frac {b}{a^{{3}/{2}}}}\, a^{{3}/{2}}+b \,x^{2}\right ) {\mathrm e}^{2 x^{2} \sqrt {-\frac {b}{a^{{3}/{2}}}}}+b \,x^{2}-\sqrt {-\frac {b}{a^{{3}/{2}}}}\, a^{{3}/{2}}\right ) \left (c_1 \,{\mathrm e}^{2 x^{2} \sqrt {-\frac {b}{a^{{3}/{2}}}}}+1\right ) {\mathrm e}^{\frac {x^{2} \left (-2 \sqrt {-\frac {b}{a^{{3}/{2}}}}\, a^{{3}/{2}}+b \,x^{2}\right )}{a^{{3}/{2}}}} a}}{a \left (c_1 \,{\mathrm e}^{2 x^{2} \sqrt {-\frac {b}{a^{{3}/{2}}}}}+1\right )} \\ y &= -\frac {{\mathrm e}^{-\frac {x^{2} \left (-2 \sqrt {-\frac {b}{a^{{3}/{2}}}}\, a^{{3}/{2}}+b \,x^{2}\right )}{2 a^{{3}/{2}}}} \sqrt {-\left (c_1 \left (\sqrt {-\frac {b}{a^{{3}/{2}}}}\, a^{{3}/{2}}+b \,x^{2}\right ) {\mathrm e}^{2 x^{2} \sqrt {-\frac {b}{a^{{3}/{2}}}}}+b \,x^{2}-\sqrt {-\frac {b}{a^{{3}/{2}}}}\, a^{{3}/{2}}\right ) \left (c_1 \,{\mathrm e}^{2 x^{2} \sqrt {-\frac {b}{a^{{3}/{2}}}}}+1\right ) {\mathrm e}^{\frac {x^{2} \left (-2 \sqrt {-\frac {b}{a^{{3}/{2}}}}\, a^{{3}/{2}}+b \,x^{2}\right )}{a^{{3}/{2}}}} a}}{a \left (c_1 \,{\mathrm e}^{2 x^{2} \sqrt {-\frac {b}{a^{{3}/{2}}}}}+1\right )} \\ \end{align*}
Mathematica. Time used: 0.22 (sec). Leaf size: 201
ode=D[y[x],x] == (x*(b*x^2 + a*y[x]^2)^2)/(a^(5/2)*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x\left (\frac {a^3 b^2 K[1]}{b^2 K[1]^4+2 a b y(x)^2 K[1]^2+a^2 y(x)^4+a^{3/2} b}-a^{3/2} b K[1]\right )dK[1]+\int _1^{y(x)}\left (\frac {a^4 b K[2]}{b^2 x^4+2 a b K[2]^2 x^2+a^2 K[2]^4+a^{3/2} b}-\int _1^x-\frac {a^3 b^2 K[1] \left (4 a^2 K[2]^3+4 a b K[1]^2 K[2]\right )}{\left (b^2 K[1]^4+2 a b K[2]^2 K[1]^2+a^2 K[2]^4+a^{3/2} b\right )^2}dK[1]\right )dK[2]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - x*(a*y(x)**2 + b*x**2)**2/(a**(5/2)*y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - x*(a**2*y(x)**4 + 2*a*b*x**2*y(x)**2 + b**2*x**4)/(a**(5/2)*y(x)) cannot be solved by the factorable group method