54.2.81 problem 657

Internal problem ID [11955]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 657
Date solved : Tuesday, September 30, 2025 at 11:47:51 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=-\frac {x}{4}+\frac {1}{4}+x^{2} \sqrt {x^{2}-2 x +1+8 y} \end{align*}
Maple. Time used: 0.085 (sec). Leaf size: 26
ode:=diff(y(x),x) = -1/4*x+1/4+x^2*(x^2-2*x+1+8*y(x))^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ c_{1} +\frac {4 x^{3}}{3}-\sqrt {x^{2}-2 x +1+8 y} = 0 \]
Mathematica. Time used: 0.626 (sec). Leaf size: 37
ode=D[y[x],x] == 1/4 - x/4 + x^2*Sqrt[1 - 2*x + x^2 + 8*y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{72} \left (16 x^6-96 c_1 x^3-9 x^2+18 x-9+144 c_1{}^2\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*sqrt(x**2 - 2*x + 8*y(x) + 1) + x/4 + Derivative(y(x), x) - 1/4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out