Internal
problem
ID
[11977]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
679
Date
solved
:
Tuesday, September 30, 2025 at 11:51:13 PM
CAS
classification
:
[[_homogeneous, `class D`], _Riccati]
ode:=diff(y(x),x) = (y(x)+x^3*ln(x)+x^4+x^3+7*x*y(x)^2*ln(x)+7*x^2*y(x)^2+7*x*y(x)^2)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x^3 + x^4 + x^3*Log[x] + y[x] + 7*x*y[x]^2 + 7*x^2*y[x]^2 + 7*x*Log[x]*y[x]^2)/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**4 + x**3*log(x) + x**3 + 7*x**2*y(x)**2 + 7*x*y(x)**2*log(x) + 7*x*y(x)**2 + y(x))/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x**3 - x**2*log(x) - x**2 - 7*x*y(x)**2 - 7*y(x)**2*log(x) - 7*y(x)**2 + Derivative(y(x), x) - y(x)/x cannot be solved by the factorable group method