54.2.114 problem 690

Internal problem ID [11988]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 690
Date solved : Sunday, October 12, 2025 at 02:08:39 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=\frac {-x^{2}+1+4 x^{3} \sqrt {x^{2}-2 x +1+8 y}}{4 x +4} \end{align*}
Maple. Time used: 0.167 (sec). Leaf size: 40
ode:=diff(y(x),x) = 1/4*(-x^2+1+4*x^3*(x^2-2*x+1+8*y(x))^(1/2))/(1+x); 
dsolve(ode,y(x), singsol=all);
 
\[ c_{1} +\frac {4 x^{3}}{3}-2 x^{2}+4 x -4 \ln \left (x +1\right )-\sqrt {x^{2}-2 x +1+8 y} = 0 \]
Mathematica. Time used: 1.031 (sec). Leaf size: 108
ode=D[y[x],x] == (1/4 - x^2/4 + x^3*Sqrt[1 - 2*x + x^2 + 8*y[x]])/(1 + x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2 x^6}{9}-\frac {2 x^5}{3}+\frac {11 x^4}{6}-\frac {2}{3} (3+2 c_1) x^3+\left (\frac {15}{8}+2 c_1\right ) x^2+\left (\frac {4 x^3}{3}-2 x^2+4 x-4 c_1\right ) \log \left (\frac {1}{x+1}\right )+2 \log ^2\left (\frac {1}{x+1}\right )+\left (\frac {1}{4}-4 c_1\right ) x-\frac {1}{8}+2 c_1{}^2 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (4*x**3*sqrt(x**2 - 2*x + 8*y(x) + 1) - x**2 + 1)/(4*x + 4),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out