Internal
problem
ID
[11993]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
695
Date
solved
:
Tuesday, September 30, 2025 at 11:52:24 PM
CAS
classification
:
[[_homogeneous, `class D`], _Riccati]
ode:=diff(y(x),x) = (y(x)*ln(x-1)+x^4+x^3+x^2*y(x)^2+x*y(x)^2)/ln(x-1)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x^3 + x^4 + Log[-1 + x]*y[x] + x*y[x]^2 + x^2*y[x]^2)/(x*Log[-1 + x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**4 + x**3 + x**2*y(x)**2 + x*y(x)**2 + y(x)*log(x - 1))/(x*log(x - 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out