Internal
problem
ID
[11999]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
701
Date
solved
:
Tuesday, September 30, 2025 at 11:52:42 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = (2*x*exp(x)-2*x-ln(x)-1+x^4*ln(x)+x^4-2*y(x)*x^2*ln(x)-2*x^2*y(x)+y(x)^2*ln(x)+y(x)^2)/(-1+exp(x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-1 - 2*x + 2*E^x*x + x^4 - Log[x] + x^4*Log[x] - 2*x^2*y[x] - 2*x^2*Log[x]*y[x] + y[x]^2 + Log[x]*y[x]^2)/(-1 + E^x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**4*log(x) + x**4 - 2*x**2*y(x)*log(x) - 2*x**2*y(x) + 2*x*exp(x) - 2*x + y(x)**2*log(x) + y(x)**2 - log(x) - 1)/(exp(x) - 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
IndexError : Index out of range: a[1]