Internal
problem
ID
[12011]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
714
Date
solved
:
Tuesday, September 30, 2025 at 11:54:45 PM
CAS
classification
:
[_Bernoulli]
ode:=diff(y(x),x) = -y(x)*(-ln(1/x)+exp(x)+y(x)*x^2*ln(x)+x^3*y(x)-x*ln(x)-x^2)/(-ln(1/x)+exp(x))/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == -((y[x]*(E^x - x^2 - Log[x^(-1)] - x*Log[x] + x^3*y[x] + x^2*Log[x]*y[x]))/(x*(E^x - Log[x^(-1)]))); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) + (x**3*y(x) + x**2*y(x)*log(x) - x**2 - x*log(x) + exp(x) - log(1/x))*y(x)/(x*(exp(x) - log(1/x))),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Invalid NaN comparison