54.2.151 problem 728

Internal problem ID [12025]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 728
Date solved : Tuesday, September 30, 2025 at 11:57:31 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }&=\frac {\left (x^{3}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 58
ode:=diff(y(x),x) = 1/(6*y(x)^2+x)*(x^3+3*y(x)^2)*y(x)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {y^{2} x}{6 y^{2}+x} = \frac {\left ({\mathrm e}^{\operatorname {RootOf}\left (x^{2} {\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{\textit {\_Z}} \ln \left (\left ({\mathrm e}^{\textit {\_Z}}+9\right ) x \right )+{\mathrm e}^{\textit {\_Z}} \ln \left (2\right )+3 c_1 \,{\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+9\right )}+9\right ) x}{54} \]
Mathematica. Time used: 2.588 (sec). Leaf size: 77
ode=D[y[x],x] == (y[x]*(x^3 + 3*y[x]^2))/(x*(x + 6*y[x]^2)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{x^2+2 c_1}}{x}\right )}}{\sqrt {6}}\\ y(x)&\to \frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{x^2+2 c_1}}{x}\right )}}{\sqrt {6}}\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**3 + 3*y(x)**2)*y(x)/(x*(x + 6*y(x)**2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3 + 3*y(x)**2)*y(x)/(x*(x + 6*y(x)**2)) cannot be solved by the lie group method