Internal
problem
ID
[12027]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
730
Date
solved
:
Sunday, October 12, 2025 at 02:11:46 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]
ode:=diff(y(x),x) = 1/4*(2*y(x)^(3/2)-3*exp(x))^3*exp(x)/(2*y(x)^(3/2)-3*exp(x)+2)/y(x)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (E^x*(-3*E^x + 2*y[x]^(3/2))^3)/(4*Sqrt[y[x]]*(2 - 3*E^x + 2*y[x]^(3/2))); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(2*y(x)**(3/2) - 3*exp(x))**3*exp(x)/((8*y(x)**(3/2) - 12*exp(x) + 8)*sqrt(y(x))) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out