1.3.24 problem 24

Internal problem ID [64]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.4 (separable equations). Problems at page 43
Problem number : 24
Date solved : Tuesday, September 30, 2025 at 03:41:19 AM
CAS classification : [_separable]

\begin{align*} \tan \left (x \right ) y^{\prime }&=y \end{align*}

With initial conditions

\begin{align*} y \left (\frac {\pi }{2}\right )&=\frac {\pi }{2} \\ \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 9
ode:=tan(x)*diff(y(x),x) = y(x); 
ic:=[y(1/2*Pi) = 1/2*Pi]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {\pi \sin \left (x \right )}{2} \]
Mathematica. Time used: 0.024 (sec). Leaf size: 12
ode=Tan[x]*D[y[x],x]== y[x]; 
ic={y[Pi/2]==Pi/2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \pi \sin (x) \end{align*}
Sympy. Time used: 0.133 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + tan(x)*Derivative(y(x), x),0) 
ics = {y(pi/2): pi/2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\pi \sin {\left (x \right )}}{2} \]