54.2.224 problem 801

Internal problem ID [12098]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 801
Date solved : Wednesday, October 01, 2025 at 12:32:33 AM
CAS classification : [_Abel]

\begin{align*} y^{\prime }&=\frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2+2 y^{2} {\mathrm e}^{-\frac {x^{2}}{2}}+2 y^{3} {\mathrm e}^{-\frac {3 x^{2}}{4}}\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 45
ode:=diff(y(x),x) = 1/2*(y(x)*exp(-1/4*x^2)*x+2+2*y(x)^2*exp(-1/2*x^2)+2*y(x)^3*exp(-3/4*x^2))*exp(1/4*x^2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {29 \,{\mathrm e}^{\frac {x^{2}}{4}} \operatorname {RootOf}\left (-81 \int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} +x +3 c_1 \right )}{9}-\frac {{\mathrm e}^{\frac {x^{2}}{4}}}{3} \]
Mathematica. Time used: 0.24 (sec). Leaf size: 104
ode=D[y[x],x] == (E^(x^2/4)*(2 + (x*y[x])/E^(x^2/4) + (2*y[x]^2)/E^(x^2/2) + (2*y[x]^3)/E^((3*x^2)/4)))/2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {3 e^{-\frac {x^2}{2}} y(x)+e^{-\frac {x^2}{4}}}{\sqrt [3]{29} \sqrt [3]{e^{-\frac {3 x^2}{4}}}}}\frac {1}{K[1]^3-\frac {3 K[1]}{29^{2/3}}+1}dK[1]=\frac {1}{9} 29^{2/3} e^{\frac {x^2}{2}} \left (e^{-\frac {3 x^2}{4}}\right )^{2/3} x+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x*y(x)*exp(-x**2/4) - 2*y(x)**3*exp(-3*x**2/4) - 2*y(x)**2*exp(-x**2/2) - 2)*exp(x**2/4)/2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out