1.3.29 problem 29

Internal problem ID [69]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.4 (separable equations). Problems at page 43
Problem number : 29
Date solved : Tuesday, September 30, 2025 at 03:41:29 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (a \right )&=b \\ \end{align*}
Maple. Time used: 0.013 (sec). Leaf size: 17
ode:=diff(y(x),x) = y(x)^2; 
ic:=[y(a) = b]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {b}{1+\left (a -x \right ) b} \]
Mathematica. Time used: 0.055 (sec). Leaf size: 18
ode=D[y[x],x]== y[x]^2; 
ic={y[a]==b}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {b}{a b-b x+1} \end{align*}
Sympy. Time used: 0.085 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), x),0) 
ics = {y(a): b} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {1}{x + \frac {- a b - 1}{b}} \]