Internal
problem
ID
[12117]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
820
Date
solved
:
Sunday, October 12, 2025 at 02:21:00 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=diff(y(x),x) = 1/2*(-2*cos(y(x))+x^2*cos(2*y(x))*ln(x)+x^2*ln(x))/sin(y(x))/ln(x)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (Csc[y[x]]*(-Cos[y[x]] + (x^2*Log[x])/2 + (x^2*Cos[2*y[x]]*Log[x])/2))/(x*Log[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**2*log(x)*cos(2*y(x)) + x**2*log(x) - 2*cos(y(x)))/(2*x*log(x)*sin(y(x))),0) ics = {} dsolve(ode,func=y(x),ics=ics)