Internal
problem
ID
[12126]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
829
Date
solved
:
Sunday, October 12, 2025 at 02:21:45 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=diff(y(x),x) = 1/2*(1+2*(4*x^2*y(x)+1)^(1/2)*x^3+2*x^5*(4*x^2*y(x)+1)^(1/2)+2*x^6*(4*x^2*y(x)+1)^(1/2))/x^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (1/2 + x^3*Sqrt[1 + 4*x^2*y[x]] + x^5*Sqrt[1 + 4*x^2*y[x]] + x^6*Sqrt[1 + 4*x^2*y[x]])/x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (2*x**6*sqrt(4*x**2*y(x) + 1) + 2*x**5*sqrt(4*x**2*y(x) + 1) + 2*x**3*sqrt(4*x**2*y(x) + 1) + 1)/(2*x**3),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out